Willkommen Welcome Bienvenue

Materials Science & Technology

Challenge of Impact assessment for by-product and co-product metal

Xiaoyue Du, Roland Hischier, Patrick Wäger

EMPA, Switzerland April 11, 2014 LCA DF55

Modul 1: System analysis

Quantification and screening of critical metals in WEEE

Modul 2: Case studies

Recycling

Collection and losgitics

Economic and ecological aspects

Modul 3: Recycling system of critical metals

Recycling system

Preparation and improvement

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

Sample

Sample preparation

Chemical analysis

Neodymium and Indium Primary and Seondary Production

- Improve Life Cycle Inventory
- Develop Life Cycle Assessment
- Compare the impact

Nd Primary and Secondary Production

Nd Primary Production

- Ore deposit, Rare earth concentrate, Rare earth oxide, Nd oxide (Nd metal)
- Bastnasite vs. Monazite

Nd Seondary Production

- Mainly focus on magnets
- Manual dismantling vs. Mechanic shredding
- Process 1: Nd Magnet to Nd magnet
- Process 2: Magnet to Nd oxide/Nd

Neodymium primary production from bastinasite Rare earth concentrate from ore deposit

Source: ecoinvent v2.2

Comparing 1 kg Rare Earth Concentrate

Materials Science & Technology

Method: ReCiPe Endpoint (H) V1.09 / World ReCiPe H/H / Single score

Neodymium primary production from bastnasite Rare earth oxide from concentrate

Detailed Flowsheet for the multi-output process of "Rare Earth Oxide production from Bastnasite"

Lanthanum oxide, at plant/kg/CN (**1 kg**) cerium concentrate, 60% cerium oxide, at plant/kg/CN (**1 kg**) Neodymium oxide (**1 kg**) Praseodymium oxide, at plant/kg/CN (**1 kg**) Samarium europium gadolinium concentrate, 94% rare earth oxide, at plant/kg/CN (**1 kg**)

Source: ecoinvent v2.2

Comparing 1kg Rare Earth Oxides

EMC

Comparing processes; Method: ReCiPe Endpoint (H) V1.09 / World ReCiPe H/H / Single score

Comparing 1 kg rare earth oxide from EMPA© monazite

Comparing 1kg Nd Oxide

Materials Science & Technology

Summary

Nd Primary production

- Nd oxide> REO> RE concentrate
- REO from monazite > REO from bastinasite
- RE concentrate from bastinasite > REO concentrate from monazite
- Impact is slightly lower in v3 than v2.2

Indium Primary and Secondary Production

In Primary Production

Zinc lead deposit, leaching residue, indium, indium stockpiling (ITO powder)

In Secondary Production

- Mainly focus on LCD
- Compare different mechanical processing

Indium as by-product from Zinc-lead-deposit

Source: ecoinvent v2.2

Summary

In Primary Production

- In > > In leaching residue
- Impact is much lower in v3 than v2.2
 - Correction: the process "smelting, primary zinc production" GLO in v2.2 had 0.0033778kg of cadmium sludge, from zinc electrolysis and 0.33939kg of leaching residues, indium rich and in v3 it was corrected to 0.014kg and 1.235kg respectively. Similar changes were made also in other datasets in this supply chain.

Discussion

 Better allocation for by-product or co-product in primary production

- Comparing the primary and secondary production
- Nd as co-product in ore vs. Nd as main product in magnet
- In as by-product in ore vs. In as co-product in LCD
- Comparing different metals in secondary production
- Allocation in secondary production
- e.g. In in the screen vs. Cu in PCB in computer

Thank you! Xiaoyue.du@empa.ch

